Buy Android Smartphone, iPhone screen and removing, Winmax, Official Firmware Flash File, Octopus, NCK Dongle SPD, Z3X BOX Samsung Tool, Default, T-Mobile US, latest WhatsApp Messenger Version

Jumat, 27 Desember 2013

SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES

SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES - technology continues to emerge and make life easier for us, but behind it also save difficulties for the layman about the technology .. in the blog Buy Android Smartphone we will discuss a lot of technological developments that appear at this time, well now we will discuss first about SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES we have gathered a lot of information from various sources, please see.

Articles : SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES
full Link : SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES

You can also see our article on:


SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES

SIMULATION OF BLOCK CODES
AIM
To simulate linear block coding techniques for hamming and cyclic code using MATLAB.
THEORY
HAMMING CODES
Consider a family of (n,k) linear block codes that have the following parameters.
Block length,n=2m-1
No.of.message bits k=2m-m-1
No. of parity bits, n-k=m, where m>=3.
These are so called Hamming codes. To illustrate the relations between the minimum distance dmin and the structure of the parity check matrix H. Consider the codeword 0110100,In the matrix multiplication is done, and the non-zero elements of this codeword “shift” out the second, third and fifth column of the matrix if yielding. An important property of hamming codes is that they satisfy the condition. t=1.This means that hamming codes are single error correcting binary perfect codes.
CYCLIC CODES
Cyclic codes form a sub class of linear block codes.A binary code is said to be cyclic code,if it exhibits two fundamental properties.
  1. LINEARITY PROPERTY
The sum of two codeword is also a codeword.
  1. CYCLIC PROPERTY
Any cyclic shift of codeword is also called a codeword.


ALGORITHM
HAMMING CODE
STEP 1: Start the program
STEP 2: Assign the number of parity bits m=4
STEP 3: Calculate the block length n from m=2m-1
STEP 4: Assign the number of message bits k such that n-k=m so k=11
STEP 5: The hamming code is (5,11)
STEP 6: Obtain the input signal message randomly the input message is in binary format
STEP 7: The parity bits are calculated for input message taken.
STEP 8: The parity bits are appended along the message bit to form the codeword.
STEP 9: The codeword formed is transmitted through AWGN channel
STEP10: The received signal is then decoded to retrieve the message
STEP 11: The BER is calculated for the retrieved message
STEP 12: For the various values of the SNR and its corresponding BER,the graph is
Plotted.
CYCLIC CODE
STEP 1: Start the program.
STEP 2: Assign the block length n=7.
STEP 3: Assign the message bits,k=4.
STEP 4: The cyclic code is (7,4)
STEP 5:Generate the polynomial.
STEP 6: Obtain the input message randomly.
STEP 7: The input message is in binary format.
STEP 8: The codeword is formed by appending the parity bits with the message bits.
STEP 9: The parity bits are calculated from the generation polynomial.
STEP10: The codeword formed is transmitted through AWGN channel.
STEP11: The received signal is then decoded with the help of generator polynomial

      Knowledge to retrieve the message.

PROGRAM

HAMMING CODE 
####################################
clc;
clear all;
close all;
m=4;
n=2^m-1;
k=11;
berf=[];
for i=1:10
    b=0;
    for j=1:50
        msg=randint(500,k,[0,1]);
        code=encode(msg,n,k,'hamming/binary');
        t=0:0.1:10;
        snr=0;
        y=awgn(code,i);
        y(find(y>0))=1;
        y(find(y<0))=0;
        msgop=decode(y,n,k,'hamming/binary');
        [number,b1]=biterr(msgop,msg);
        b=b+b1;
    end
    berf(i)=b/50;
end
semilogy(1:10,berf);
title('performance analysis in awgn for hamming codes');
xlabel('snr(db)');
ylabel('BER');

#######################################################################
CYCLIC CODES

clc;
clear all;
close all;
n=7;
k=4;
genpoly=cyclpoly(n,k,'max');
berf=[];
for i=1:10
    b=0;
    for j=1:50
        msg=randint(500,k,[0,1]);
        code=encode(msg,n,k,'cyclic/binary',genpoly);
        t=0:0.1:10;
        snr=0;
        y=awgn(code,i);
        y(find(y>0))=1;
        y(find(y<0))=1;
        msgop=decode(y,n,k,'cyclic/binary',genpoly);
        [number,b1]=biterr(msgop,msg);
        b=b+b1;
    end
    berf(i)=b/50;
end
semilogy(1:10,berf);
title('performance analysis in awgn for cyclic codes');
xlabel ('snr (db)');
ylabel ('BER');

#########################################################

RESULT
Thus the linear block coding technique for hamming code and cyclic code has been simulated using MATLAB.



information SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES we have delivered

hopefully SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES information can provide benefits for you in adding knowledge about gadgets,

you have finished reading article with title SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES if you intend to bookmark or share please use link https://buyandroidsmartphone.blogspot.com/2013/12/simulation-of-block-codes-hamming-and.html hopefully useful for you

Tag :
Share on Facebook
Share on Twitter
Share on Google+
Tags :

Related : SIMULATION OF BLOCK CODES HAMMING AND CYCLIC CODES

0 komentar:

Posting Komentar